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Our goal is to develop a fundamental theory for the
description of thermonuclear reactions and exotic nuclei
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Large-scale computations have already allowed us to
describe static properties of nuclei from first principles

= Ab initio no-core shell model
(NCSM) approach

 Bound states

e Two- and three-nucleon
(NN+3N) forces based upon
Quantum Chromodynamics

Helped to point out
the fundamental importance

of 3N forces in structure
calculations.

Energy spectrum of nuclear states (MeV)
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We extended this approach by adding the dynamics
between nuclei with the resonating-group method (RGM)

= Reconstruct the interaction potential between a projectile
and a target starting from:

r
e ADb initio NCSM wf. of the clusters */‘
(a)

e Nucleon-nucleon (NN) interactions

= Solve for projectile-target relative motion

= |nvestments from: DOE/SC/NP, SciDAC-2 (UNEDEF)

Pioneered ab Initio calculations of light-nuclei

fusion reactions starting from NN interactions

Lawrence Livermore National Laboratory m w77a017 & 4



Started with nucleon-nucleus collisions & gradually built
up capability to describe fusion reactions with NN force
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Now including 3N force in reactions and describing
continuum of three clusters (DOE/SC/NP Early Career)

n
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high-fidelity simulations systems with 3-body
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From now through 2017: deliver high-fidelity simulations
complete of both 3N-force & 3-cluster dynamic effects

Electron screening |o(E)

= In 2017: 3H+3H->4He+n+n (fusion

research) and 3He+3He—>*He+p+p j
(solar astrophysics) 3
e As an intermediate step calculation @
with only NN interaction ’

= [n 2017: Spectroscopy of
Borromean exotic nucleus "Li
as %Li+n+n (FRIB physics)

o At first ®He(=*He+n+n)and °H

(=2H+n+n) with NN+3N force
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Our problem, our solution

* Problem: Y [dF |H, (,F)-E N, (7.F)| &F)=0
v A L {

a 7 r a
a “ a
@ (Aa)>} K(A—a) v

1) Input: NN, 3N interactions; projectile, target wave functions

. . !
Hamiltonian {<®L(S;A ) T
a v v v Ly

couplings (A-a)

ol s Overlap
@ (42 couplings

a)

2) Compute: Hamiltonian and Overlap couplings

e Non trivial specialized algebra, depends on projectile mass
e Sparse matrices; dim = f(# oscillator shells,# projectile nucleons)
e Sparsity not easily predictable, depends on interaction in input

3) Solve: 2-, 3-body coupled-channel equations

e At each energy step: dense linear algebra

4) Output: Scattering matrix, wave functions, phase shifts
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Our biggest computational challenges come
from couplings depending on many-body densities

| N+(A-1) with 3N interaction |

= Storing in memory many-body
density matrices not feasible

(A-1)

* SD <l/j0‘1'

+ _+ _+

a,a;a;a,a,q,

(A-1) >
wa] SD

A. Compute and store (coupled)

reduced matrix elements 2 . <1/Jé ?_1)‘ @ (“;";)K,T,)KT/H'/’éA_4)>SD
» Efficient when doable
e Only very light systems X o <’/’1(%A_4) H((amaz )" ak)KT‘ w(f—l)%l)

B. On the fly calculation of
(uncoupled) density matrices

w‘(’:‘_l) >SD - E ‘ SD>i

1

» Well suited for parallel computing

e Can address heavier systems

In 2017 we expect to transition more and more towards strategy B.
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The primary code is NCSM_RGM, based on strategy A.

= Hybrid MPI/OpenMP
e up to 98,304 cores on TITAN

= Algorithms include
* Mostly specialized, in house
e Matrix multiplications,
inversions, diagonalizations
= Recent optimizations include
 MPI I/O for large input data
e Hybrid “all slaves” algorithms

 MKL threaded libraries for
dense algebra components

Excellent scaling should continue

in larger model spaces (to study)
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Current HPC Usage (2012-2013)

= LLNL Institutional Computing » 10M Core-Hrs, ~70 runs/year
Grand Challenge (SIERRA) > Typically 1,000 MPI tasks and
e 1,944 nodes, 12 cores/node 12 OpenMP threads/task

. 261 teraflop/s, 24 GB/node for 12 Hrs

= |INCITE allocation, PI: J. Vary, » 23M Core-Hrs, ~50 runs/year

co-Pl: P. Navratil (TITAN) > Up to 6,144 nodes for 8 Hrs:
12,288 MPI tasks, 8 OpenMP
threads/task (98,304 cores)

Y

12M Core-Hrs

Typically 200-600 nodes, i.e.
3 to 10% of machine

» Could use 20% now

= NERSC project “m94”, PI: J.
Vary (Edison, early users)

A\
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Current HPC Usage (2012-2013)

= LLNL Institutional Computing
Grand Challenge (SIERRA)

e 1,944 nodes, 12 cores/node » Memory Usage:

« 261 teraflop/s, 24 GB/node *All memory on the node
e Need at least 2GB/core

= INCITE allocation, PI: J. Vary, « Use all global memory

co-Pl: P. Navratil (TITAN)
» Data Usage:

* |nput <100 GB
e Output<0.5TB

= NERSC project “m94”, PI: J. « Use mostly /scrach

Vary (Edison, early users)
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HPC Requirements for 2017

Estimate: 15 x (usage for 3-
cluster simulations)

Selected, more challenging
science goals

Concurrent storage of 3N
matrix elements & 3-cluster
configurations

Approach under development

Unprecedented large scale

Store more scattering data for
later use

Minimum 25M Core-Hrs

Fewer, larger runs (20-50% of
Edison), same typical run time

Will need all memory on node,
i.e., # MPI tasks = # nodes

e Use threads with OpenMP

Expect algorithmic changes

May need more load balancing

Larger data requirement
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Summary

With HPC we are addressing previously unsolvable problems:
M NNN force in light-nucleus reactions
M Ab initio description of three clusters in the continuum

= More memory, larger core count, larger allocations will allow
higher-fidelity simulations of complex reactions & exotic nuclei

« Solar astrophysics, fusion research, FRIB physics

= To achieve these goals and make optimal use of new HPC
architectures we will need the help of NERSC experts!
* Not yet using GPUs (MP1/OpenMP more adapt to our problem);
* Not porting/optimizing for MIC (Or are we?);

= Need more SciDAC type of support; dedicated positions to foster
new generation of computational+nuclear scientists that can help
us keep up with new technologies and reach the exascale
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Extras
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Accurate nuclear interactions (and currents)

= Nuclear forces are governed by quantum ° NN force : NNN force :NNNN force
chromodynamics (QCD) f

* QCD non perturbative at low energies Q’ X}_
= Chiral effective filed theory (xEFT)

* retains all symmetries of QCD X > |<:‘
—_ Q2 : :

e explicit degrees of freedom: t, N
= Perturbative expansion in positive powers
of (/A )«1 (A~ 1 Gev)
e nuclear interactions :
e nuclear currents Q° :

H

= Low-energy constants (LECs) absorb short- X

X+ iFI F HEX T
« some day all from lattice QCD N3|_0

e now constrained by experiment + ..
Worked out by Van Kolck, Keiser,
Meissner, Epelbaum, Machleidt, ...

= Chiral symmetry dictates operator structure
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Major Publications

week ending

PRL 110, 022505 (2013) PHYSICAL REVIEW LETTERS 11 JANUARY 2013

Ab Initio Description of the Exotic Unbound "He Nucleus

Simone Baroni,">* Petr Navratil,>*" and Sofia Quaglioni**

PHYSICAL REVIEW C 87, 034326 (2013)

S

Unified ab initio approach to bound and unbound states: No-core shell model with continuum and
its application to "He

Simone Baroni,"">" Petr Navratil,>>' and Sofia Quaglioni*

PHYSICAL REVIEW C 88, 034320 (2013)

Three-cluster dynamics within an ab initio framework

Sofia Quaglioni,"* Carolina Romero-Redondo,>! and Petr Navritil>*

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-*He scattering with three-nucleon forces

Guillaume Hupin,"" Joachim Langhammer,>' Petr Navratil,> Sofia Quaglioni, Angelo Calci,>! and Robert Roth>f
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